0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳8 CpxRNTS
↳9 CompleteCoflocoProof (⇔, 123 ms)
↳10 BOUNDS(1, 1)
d(x) → e(u(x))
d(u(x)) → c(x)
c(u(x)) → b(x)
v(e(x)) → x
b(u(x)) → a(e(x))
d(x) → e(u(x)) [1]
d(u(x)) → c(x) [1]
c(u(x)) → b(x) [1]
v(e(x)) → x [1]
b(u(x)) → a(e(x)) [1]
d(x) → e(u(x)) [1]
d(u(x)) → c(x) [1]
c(u(x)) → b(x) [1]
v(e(x)) → x [1]
b(u(x)) → a(e(x)) [1]
d :: u → e:a e :: u → e:a u :: u → u c :: u → e:a b :: u → e:a v :: e:a → u a :: e:a → e:a |
c(v0) → null_c [0]
v(v0) → null_v [0]
b(v0) → null_b [0]
null_c, null_v, null_b
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
null_c => 0
null_v => 0
null_b => 0
b(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
b(z) -{ 1 }→ 1 + (1 + x) :|: x >= 0, z = 1 + x
c(z) -{ 1 }→ b(x) :|: x >= 0, z = 1 + x
c(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
d(z) -{ 1 }→ c(x) :|: x >= 0, z = 1 + x
d(z) -{ 1 }→ 1 + (1 + x) :|: x >= 0, z = x
v(z) -{ 1 }→ x :|: x >= 0, z = 1 + x
v(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
eq(start(V),0,[d(V, Out)],[V >= 0]). eq(start(V),0,[c(V, Out)],[V >= 0]). eq(start(V),0,[v(V, Out)],[V >= 0]). eq(start(V),0,[b(V, Out)],[V >= 0]). eq(d(V, Out),1,[],[Out = 2 + V1,V1 >= 0,V = V1]). eq(d(V, Out),1,[c(V2, Ret)],[Out = Ret,V2 >= 0,V = 1 + V2]). eq(c(V, Out),1,[b(V3, Ret1)],[Out = Ret1,V3 >= 0,V = 1 + V3]). eq(v(V, Out),1,[],[Out = V4,V4 >= 0,V = 1 + V4]). eq(b(V, Out),1,[],[Out = 2 + V5,V5 >= 0,V = 1 + V5]). eq(c(V, Out),0,[],[Out = 0,V6 >= 0,V = V6]). eq(v(V, Out),0,[],[Out = 0,V7 >= 0,V = V7]). eq(b(V, Out),0,[],[Out = 0,V8 >= 0,V = V8]). input_output_vars(d(V,Out),[V],[Out]). input_output_vars(c(V,Out),[V],[Out]). input_output_vars(v(V,Out),[V],[Out]). input_output_vars(b(V,Out),[V],[Out]). |
CoFloCo proof output:
Preprocessing Cost Relations
=====================================
#### Computed strongly connected components
0. non_recursive : [b/2]
1. non_recursive : [c/2]
2. non_recursive : [d/2]
3. non_recursive : [v/2]
4. non_recursive : [start/1]
#### Obtained direct recursion through partial evaluation
0. SCC is partially evaluated into b/2
1. SCC is partially evaluated into c/2
2. SCC is partially evaluated into d/2
3. SCC is partially evaluated into v/2
4. SCC is partially evaluated into start/1
Control-Flow Refinement of Cost Relations
=====================================
### Specialization of cost equations b/2
* CE 12 is refined into CE [14]
* CE 13 is refined into CE [15]
### Cost equations --> "Loop" of b/2
* CEs [14] --> Loop 10
* CEs [15] --> Loop 11
### Ranking functions of CR b(V,Out)
#### Partial ranking functions of CR b(V,Out)
### Specialization of cost equations c/2
* CE 8 is refined into CE [16,17]
* CE 9 is refined into CE [18]
### Cost equations --> "Loop" of c/2
* CEs [17] --> Loop 12
* CEs [16,18] --> Loop 13
### Ranking functions of CR c(V,Out)
#### Partial ranking functions of CR c(V,Out)
### Specialization of cost equations d/2
* CE 7 is refined into CE [19,20]
* CE 6 is refined into CE [21]
### Cost equations --> "Loop" of d/2
* CEs [21] --> Loop 14
* CEs [20] --> Loop 15
* CEs [19] --> Loop 16
### Ranking functions of CR d(V,Out)
#### Partial ranking functions of CR d(V,Out)
### Specialization of cost equations v/2
* CE 10 is refined into CE [22]
* CE 11 is refined into CE [23]
### Cost equations --> "Loop" of v/2
* CEs [22] --> Loop 17
* CEs [23] --> Loop 18
### Ranking functions of CR v(V,Out)
#### Partial ranking functions of CR v(V,Out)
### Specialization of cost equations start/1
* CE 2 is refined into CE [24,25,26]
* CE 3 is refined into CE [27,28]
* CE 4 is refined into CE [29,30]
* CE 5 is refined into CE [31,32]
### Cost equations --> "Loop" of start/1
* CEs [24,25,26,27,28,29,30,31,32] --> Loop 19
### Ranking functions of CR start(V)
#### Partial ranking functions of CR start(V)
Computing Bounds
=====================================
#### Cost of chains of b(V,Out):
* Chain [11]: 0
with precondition: [Out=0,V>=0]
* Chain [10]: 1
with precondition: [V+1=Out,V>=1]
#### Cost of chains of c(V,Out):
* Chain [13]: 1
with precondition: [Out=0,V>=0]
* Chain [12]: 2
with precondition: [V=Out,V>=2]
#### Cost of chains of d(V,Out):
* Chain [16]: 2
with precondition: [Out=0,V>=1]
* Chain [15]: 3
with precondition: [V=Out+1,V>=3]
* Chain [14]: 1
with precondition: [V+2=Out,V>=0]
#### Cost of chains of v(V,Out):
* Chain [18]: 0
with precondition: [Out=0,V>=0]
* Chain [17]: 1
with precondition: [V=Out+1,V>=1]
#### Cost of chains of start(V):
* Chain [19]: 3
with precondition: [V>=0]
Closed-form bounds of start(V):
-------------------------------------
* Chain [19] with precondition: [V>=0]
- Upper bound: 3
- Complexity: constant
### Maximum cost of start(V): 3
Asymptotic class: constant
* Total analysis performed in 59 ms.